Search results for "Influence function"
showing 6 items of 6 documents
k-Step shape estimators based on spatial signs and ranks
2010
In this paper, the shape matrix estimators based on spatial sign and rank vectors are considered. The estimators considered here are slight modifications of the estimators introduced in Dümbgen (1998) and Oja and Randles (2004) and further studied for example in Sirkiä et al. (2009). The shape estimators are computed using pairwise differences of the observed data, therefore there is no need to estimate the location center of the data. When the estimator is based on signs, the use of differences also implies that the estimators have the so called independence property if the estimator, that is used as an initial estimator, has it. The influence functions and limiting distributions of the es…
Symmetrised M-estimators of multivariate scatter
2007
AbstractIn this paper we introduce a family of symmetrised M-estimators of multivariate scatter. These are defined to be M-estimators only computed on pairwise differences of the observed multivariate data. Symmetrised Huber's M-estimator and Dümbgen's estimator serve as our examples. The influence functions of the symmetrised M-functionals are derived and the limiting distributions of the estimators are discussed in the multivariate elliptical case to consider the robustness and efficiency properties of estimators. The symmetrised M-estimators have the important independence property; they can therefore be used to find the independent components in the independent component analysis (ICA).
Contribution à l'estimation non paramétrique des quantiles géométriques et à l'analyse des données fonctionnelles
2008
In this dissertation we study the nonparametric geometric quantile estimation, conditional geometric quantiles estimation and functional data analysis. First, we are interested to the definition of geometric quantiles. Different simulations show that Transformation-Retransformation technique should be used to estimate geometric quantiles when the distribution is not spheric. A real study shows that, data are better modelized by geometric quantiles than by marginal one's, especially when variables that make up the random vector are correlated. Then we estimate geometric quantiles when data are obtained by survey sampling techniques. First, we propose an unbaised estimator, then using lineari…
The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies
2003
We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …
Robustifying principal component analysis with spatial sign vectors
2012
In this paper, we apply orthogonally equivariant spatial sign covariance matrices as well as their affine equivariant counterparts in principal component analysis. The influence functions and asymptotic covariance matrices of eigenvectors based on robust covariance estimators are derived in order to compare the robustness and efficiency properties. We show in particular that the estimators that use pairwise differences of the observed data have very good efficiency properties, providing practical robust alternatives to classical sample covariance matrix based methods. peerReviewed
Properties of Design-Based Functional Principal Components Analysis.
2010
This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and con…